If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+50x-400=0
a = 1; b = 50; c = -400;
Δ = b2-4ac
Δ = 502-4·1·(-400)
Δ = 4100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4100}=\sqrt{100*41}=\sqrt{100}*\sqrt{41}=10\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{41}}{2*1}=\frac{-50-10\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{41}}{2*1}=\frac{-50+10\sqrt{41}}{2} $
| 0.75s+2.25=s8+0.25 | | 9n-7=79 | | −3+5+6g=11−3g | | x+4=−x−4 | | 2(7x+6)=-44 | | 1/2(x-38)=25+6x | | 1500+50y=0 | | 10x-8=40 | | -4-2x=x-22 | | 5x+4=7x+0 | | 3x^2+4x^2+10=50 | | 5x+2=2x-22 | | -x-10-4x=-45 | | 21=x-3x-1 | | 54n=18 | | -4-6x=56 | | 10x+1.50x=4+3x | | 4+2x=2-x+6-20 | | -5=v/4-6 | | 2.5d+7.25=1+4.75d | | r2=16−6r | | 4x=2-10/23 | | x/4=x+3/6 | | (5x-2)(x+1)=x(4-10x) | | F(x)=(10-x)(x-50) | | 15+3x=39 | | 14a+13a+8=22 | | 7x+3x=5x+55= | | 2+7=14-x | | a/3-1=7 | | 3(x-5)+7x=6-2x | | x2−+4x+3=0 |